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We recently* used tautomeric equilibria to estimate aromatic resonance energies for 2- 

pyridone and analogues. Resonance energies, or more precisely, resonance energy differ- 

ences between two structures, are in principle quite generally available from equilibrium 

constants, provided the deduced m_’ values can be converted into Ago. We wish now to 

report the use of keto-enol, protonation, and pseudobase equilibria to deduce aromatic reso- 

nance energies for benzene, uracil, pyrrole, carbazole and isoquinoline. 

Benzene. The resonance energy kenxene ) of the aromatic ring of phenol (1) is related 

to the resonance energy &+enone ) of 2,4-cyclohexadienone (2) by Eq. 1 where Ag refers 

to the tautomeric equilibrium 1 Z 2 and AIIz to the corresponding tautomeric equilibrium 

3 3 4. The treatment assumes that the enthalpy difference between 3 and 4 is a satisfactory 

approximation for the difference between the enthalpies of the hypothetical non-delocalised 

analogues of 1 and 2: for a justification see Ref. 3. 
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The cyclohexenol-cyclohexanone equilibrium 3 8 4 has been measured directly4 as 2.4 x 

lo5 and can be estimated from kinetic data5 of ketone enolisation and enol ether hydrolysis as 

2.0 x 105; these values indicate a AG: of -7.5 2 0.5 kcal mole. 
-1 

The tautomeric equilibrium 1 I 2 can be discussed in terms of protonation of each taut- 

omer to the common cation 5. Phenol has a H of half protonation at the 4-Positian’ of -7.04;’ 
3819 
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however, this protonation probably follows the Hc and not the H, acidity function8 and the 

corresponding p$ is therefore -11.3. The ps for protonation at the 2-position of phenol 

must be lower than this, as the 2-protonated species is not detected in the NMR spectrum; 

however, it will probably not be much lower as the kinetic acid-catalysed exchange rates of 

protons at the 2- and 4-positions are comparable (cf discussion in Ref. 9). We therefore 

take -12 + 2 as the p& for protonation of phenol at the 2-position. The psa for cyclohexa- 

dienone (2) can be est&ated as -2.5 + 0.5 from the following data 
10 

ii 
: cyclchexanone, ps, 

- 5.6 by Arnett’s calorimetric method (1I, for half protonation -7. 112); 2-cyclohexenone 

p& - 3.6 @IA acidity function behaviour followed). 13 
Hence, for the equilibrium 1 it 2, we 

-1 est?mate log $ as 9.5 + 2.5 corresponding to AGo of 13 + 3 kcal mole. 
-0 A detailed consideration of the conversion of 4 G 

-0 
into&_ indicates’ that for tautomeric 

equilibria Ago = (1.2 2 0.1) L&O. Hence from the difference between these two equilibria, 

we estimate AHO as 25 + 5 kcal mole 
-1 

for the difference in the resonance energies of 1 and 

2. For the equilibrium 6 c, ‘7, 14A co = 3.2 kcal mole-‘: thus a value of 6 2 1 kcal mole -1 

seems appropriate for the resonance energy of cyclohexadienone. Hence, we obtain 31 + 6 

kcal mole 
-1 

for the resonance energy of the benzene ring. 

Uracil. Using a similar approach the aromatic resonance energy of uracil (A_acil), ie. 

the extra stabilisation of the molecule over the hypothetic structure in which the C6-C6 bond 

is not conjugated with the remainder of the molecule, is obtained from the difference in bR_o 

for the equilibrium 3 * 4 and that for barbituric acid 8 Z 9. For barbituric acid, the trioxo 

form (8) is favoured by &co = 2.6. 15 Together with the data quoted above for 3 9 4, and 

placing AHO = (1.2 + 0.1) Aso, this gives a value of 5 + 2 kcal mole-’ for the resonance 

energy difference between 8 and 9. A-racil will be larger than this in view of the extra 

conjugation of the third carbonyl group in structure 8. 
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The low basicity of pyrrole at the ring carbon atoms (ps of protonation of Pyrrole. 

1-methylpyrrole -2. 9 and ca -5.1 
16 at the a- and &position, respecthly) is due to the loss - 

of resonance energy on protonation. 

9.5l’ and ‘7.4l’ 

Thus dieneamines 10 and 11 possess ps values of ~8 

respectively for protonation to cations comparable ar-electrc%cal.ly with the 

cations derived from (L and 6 protonation of 1-methylpyrrole. The differences of 12.4 and 

12.5 between the p% values of these dienamines and the corresponding pK* values for l- 

methylpyrrole proto:ation can be converted’ into AA E” values of 20 2 a-and 21 2 4 kcal 
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mole. 
-1 The resonance energy of 11 has been estimated as c 6 kcaI mole 

-1 
, hence A 

-1 * -py=ole 
= 2’7 + 4 kcal mole. The pKK, value for the protonation of pyrrole in the l-position has 

been estimated _ as ca -10: al&ough the uncertainty is considerable, this also leads to a 

similar value for the aromaticity of pyrrole. 

(10) (11) 

Carbazole. From the p$ of carbazole z -6 
19 

and dibenzoquinuclidine +4.46 2o the Ago 
difference between their reso&ce energies is deduced as 1’7 2 3 kcal mole. 

-1 
The resonance 

energy of benzene reported above is 31 + 6 kcal mole 
-1 

, hence Aearbazole = ‘79 L 9 kcal mole. 
-1 

Isoquinoline. The pKK, values for the equilibria 12 Z 13 and 14 rr15 were measured as 

16.29 and 10.75 respectiv%y. This corresponds to a a go difference of 9.2 kcal mole. 
-1 

Equation 2 follows where the terms x and y are the differences in resonance energies between 

13 and benzene and 14 and benzene respectively. 

A 
isoquinoline = &,,, + 9.2 + x + y 

W-4 (13) (14) (15) 

The resonance energy, as deduced from thermochemical data of ethyl vinyl ether is 3.6 

kcal mole 
-1 

and the value for styrene less that of benzene is about 2: 
21 

assuming values of 

6 2 2 and 2 + 1 for x and y respectively, we obtain a value for A. 
-moquinoline 

of 48 + 9 kcal 
- - 

mole. 
-1 

*During the preparation of this paper D. Lloyd and D. R. MarshalI [Chem. Ind. 335 (1972)] 

reported results of a similar approach. We report our results here because we use dffferent 

models, different ps data and obtain different values for resonance energies. 
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